On a covering problem related to the centered Hardy-Littlewood maximal inequality

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Integral Systems Related to Hardy-littlewood-sobolev Inequality

We prove all the maximizers of the sharp Hardy-Littlewood-Sobolev inequality are smooth. More generally, we show all the nonnegative critical functions are smooth, radial with respect to some points and strictly decreasing in the radial direction. In particular, we resolve all the cases left open by previous works of Chen, Li and Ou on the corresponding integral systems.

متن کامل

On the Polynomial Hardy–littlewood Inequality

We investigate the growth of the constants of the polynomial Hardy-Littlewood inequality.

متن کامل

On the Lp boundedness of the non-centered Gaussian Hardy-Littlewood Maximal Function

The purpose of this paper is to prove the L p (R n ; dd) boundedness, for p > 1, of the non-centered Hardy-Littlewood maximal operator associated with the Gaussian measure dd = e ?jxj 2 dx. Let dd = e ?jxj 2 dx be a Gaussian measure in Euclidean space R n. We consider the non-centered maximal function deened by Mf(x) = sup x2B 1 (B) Z B jfj dd; where the supremum is taken over all balls B in R ...

متن کامل

On the Hardy–Littlewood Majorant Problem

Let Λ ⊆ {1, . . . , N}, and let {an}n∈Λ be a sequence with |an| ≤ 1 for all n. It is easy to see that ∥∥∥∥ ∑ n∈Λ ane(nθ) ∥∥∥∥ p ≤ ∥∥∥∥ ∑ n∈Λ e(nθ) ∥∥∥∥ p for every even integer p. We give an example which shows that this statement can fail rather dramatically when p is not an even integer. This answers in the negative a question known as the Hardy-Littlewood majorant conjecture, thereby ruling ...

متن کامل

On the Variation of the Hardy–littlewood Maximal Function

We show that a function f : R → R of bounded variation satisfies VarMf ≤ C Var f, where Mf is the centered Hardy–Littlewood maximal function of f . Consequently, the operator f 7→ (Mf) is bounded from W (R) to L(R). This answers a question of Hajłasz and Onninen in the one-dimensional case.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Arkiv för Matematik

سال: 2003

ISSN: 0004-2080

DOI: 10.1007/bf02390819